长文翻译:通过限制引导自组织
导语
自组织是指大量个体相互作用自发涌现出大规模集群结构和模式的现象,具有整体大于其组成部分之和的特性。自组织现象存在于广泛的时空尺度,例如生命就是从无机物分子的集合中涌现。近年来科学家发现,可以通过限制自组织单元的方法影响甚至控制自组织过程。限制可以作为一种工具,通过利用自组织系统与其限制特性之间的反馈控制策略,引导集群现象的涌现。本文综述了通过限制引导自组织这一活跃的跨学科领域,并指出其面临的重要研究挑战。
研究领域:自组织,群体行为,涌现
Nuno Araújo et al. | 作者
刘泽 | 译者
梁金 | 审校
邓一雪 | 编辑
论文题目:
Steering self-organisation through confinement
论文链接:http://arxiv.org/abs/2204.10059
摘要
摘要
1. 自组织及限制方法介绍
1. 自组织及限制方法介绍
图1. 通过限制自组织单元形成的涌现结构。(a) 自组织是大规模单元形成的涌现行为。限制可以在自组织系统中发挥促进(如图所示)或者抑制作用。图中箭头代表作用在个体上的外部力场。(b) 通过限制来引导自组织系统,这就要求对反馈控制进行编码,使得个体或是被限制元素(输入)适应并与目标自组织系统(输出)共同演化。在图表中,可以看出外部力场(限制)对添加给输入的控制信号(反馈控制环)做出响应,变化以包含一个旋转。由此产生的自组织模式与a中不同。
2. 限制在引导自组织行为中的作用
2. 限制在引导自组织行为中的作用
物理限制 vs 有效限制。物理(physical)限制是指物理障碍的存在限制了系统可用的相空间(如细胞的柔性膜[2],或微泳粒子[28]、机器人[29]或行人[4]的刚性壁);相比之下,有效(effective)限制源于一个表观或虚拟的边界,由具有某种内在能力(intrinsic capability)的单元感知到(如细菌[30]或蚁群[31]的化学痕迹,胶体粒子的力场[32],微泳粒子消耗资源量随时间的变化 [28],动物和机器人的通讯范围[33],限制地球大气产生湍流的引力场[15],或者使星系聚集在一起的黑洞的引力场[16])。
硬边界 vs 软边界。硬边界不受自组织系统的动力学(如固体墙[34]的情况)影响,软边界则可以变形、重塑、适应并演化以响应自组织过程的动力学(就像灵活的细胞膜[35]或流体界面[36]的情况),因此,在单元和限制边界之间存在一种反馈机制。
静态限制 vs 动态限制。静态限制在时间上是不变的(例如,用于微泳粒子的微流体室壁(microfluidic chamber)[37],或用于限制活性颗粒物质[34]的板);相反,动态限制随时间而变化(例如,随时间变化的化学梯度作为组织中细胞群的限制场[38],或社会动物所依赖的历史时间线,如蚂蚁沿着其同伴之前走过的路径[31])。
正向强化 vs 负向强化。正向(positively)和负向(negatively)强化可以指示由于限制的存在,一些情形下自组织形成过程被增强(例如通过微生物群体感应(quorum sensing)中的自诱导物 [30] 或在组织形成与增生中的化学梯度[39]),一些情形下自组织过程被破坏(例如由于多孔介质,结晶过程会消退[40])。
外部强化 vs 自我强化。最后,限制通常被认为是一种外部特征,即不属于自组织系统。然而,在某些领域(例如在活性胶体、群居动物和集群机器人的研究中),自限制(self-imposed confinement)的概念被广泛接受,来描述通过内部反馈产生群体动力学的边界的情况(例如,像蚂蚁这样的群居动物对路径形成的感知线索 [31])。这在图2的顶部有说明,并促进了一种完全不同类型的限制。
图2. 不同约束条件下,不同尺度的自组织系统。该图包含了在自然界和人工系统中,发生在不同空间(时间)尺度下受到不同限制产生的自组织实例。横轴代表自组织单元的尺寸,从分子尺度到天文尺度。纵轴代表基于其复杂性或当前缺乏相应了解(划分可能不“科学”)划分的限制条件类型。在图的底部,为了更简便、更好地理解限制的形式,用蓝色阴影突出显示,包括外部边界(如壁(walls)、界面和势能)。在图的顶部,单独列出一种特殊的限制类型,虽然对这个限制类型了解很少,但其在引导自组织行为上有很大的潜力。这些不同类型限制包括自组织单元与限制特征之间的反馈控制环。(如在微生物生物膜形成前的群体感应中[21],在蚁群建造桥梁等结构的信息交换中[22],在原行星形成的自引力中[23])。
3. 首要的科学挑战
3. 首要的科学挑战
图3. 生物中受限制下的层级自组织实例。从分子到形成组织的层级过程,经历了大分子、细胞器、细胞的形成。在每个阶段,由于不同类型的限制,上一阶段完成自组织的结构将成为下一阶段自组织中的组成单元,这里仅在分子、细胞与组织尺度介绍。限制的来源包括,例如物理边界、机械力(F)、化学梯度。生物系统中复杂功能的涌现依赖这种层级结构。
4. 前景展望
4. 前景展望
参考文献
[1] Whitesides, G.M., Mathias, J.P., Seto, C.T.: Molecular self-assembly and nanochemistry: a chemical strategy for the synthesis of nanostructures. Science 254(5036), 1312–1319 (1991)[2] Moussaïd, M., Garnier, S., Theraulaz, G., Helbing, D.: Collective infor- mation processing and pattern formation in swarms, flocks, and crowds. Top. Cogn. Sci. 1(3), 469–497 (2009)[3] Moussaïd, M., Helbing, D., Theraulaz, G.: How simple rules determinepedestrian behavior and crowd disasters. Proc. Natl. Acad. Sci. U.S.A. 108(17), 6884–6888 (2011)[4] Echeverría-Huarte, I., Nicolas, A., Hidalgo, R.C., Garcimartín, A.,Zuriguel, I.: Spontaneous emergence of counterclockwise vortex motion in assemblies of pedestrians roaming within an enclosure. Scientific Reports 12(1), 1–9 (2022)[5] Bechinger, C., Di Leonardo, R., Löwen, H., Reichhardt, C., Volpe, G.,Volpe, G.: Active particles in complex and crowded environments. Rev. Mod. Phys. 88, 045006 (2016)[6] Silbert, L.E., Grest, G.S., Plimpton, S.J., Levine, D.: Boundary effects and self-organization in dense granular flows. Phys. Fluids 14(8), 2637–2646 (2002)[7] Oh, H., Shirazi, A.R., Sun, C., Jin, Y.: Bio-inspired self-organising multi-robot pattern formation: A review. Robot. Auton. Syst. 91, 83–100 (2017)[8] Whitesides, G.M., Grzybowski, B.: Self-assembly at all scales. Science 295(5564), 2418–2421 (2002)[9] Camazine, S., Deneubourg, J.-L., Franks, N.R., Sneyd, J., Theraulaz,G., Bonabeau, E.: Self-organization in Biological Systems. Princeton University Press, Princeton, New Jersey (2001)[10] Prigogine, I.: Etude thermodynamique des phénomènes irreversible. Bull.Acad. Roy. Blg. Cl. Sci. 31, 600–606 (1945)[11] Karsenti, E.: Self-organization in cell biology: a brief history. Nat. Rev,Mol. Cell Biol. 9(3), 255–262 (2008)[12] Grzybowski, B.A., Fitzner, K., Paczesny, J., Granick, S.: From dynamicself-assembly to networked chemical systems. Chem. Soc. Rev. 46(18), 5647–5678 (2017)[13] Sieben, A., Schumann, J., Seyfried, A.: Collective phenomena in crowds—where pedestrian dynamics need social psychology. PLoS one 12(6), 0177328 (2017)[14] Opathalage, A., Norton, M.M., Juniper, M.P., Langeslay, B., Aghvami,S.A., Fraden, S., Dogic, Z.: Self-organized dynamics and the transition to turbulence of confined active nematics. Proc. Natl. Acad. Sci. U.S.A. 116(11), 4788–4797 (2019)[15] Boffetta, G., Ecke, R.E.: Two-dimensional turbulence. Annu. Rev. FluidMech. 44, 427–451 (2012)[16] Kravtsov, A.V., Borgani, S.: Formation of galaxy clusters. Annu. Rev.Astron. Astrophys. 50, 353–409 (2012)[17] Vicsek, T., Zafeiris, A.: Collective motion. Phys. Rep. 517(3-4), 71–140(2012)[18] Taylor, A.B., Zijlstra, P.: Single-molecule plasmon sensing: current status and future prospects. ACS Sens. 2(8), 1103–1122 (2017)[19] Mafalda D. Neto, J.F.M. Mariana B. Oliveira: Microparticles in contactwith cells: From carriers to multifunctional tissue modulators. Trends Biotechnol. 37, 1011–1028 (2019)[20] Feliciani, C., Zuriguel, I., Garcimartín, A., Maza, D., Nishinari, K.:Systematic experimental investigation of the obstacle effect during non- competitive and extremely competitive evacuations. Sci. Rep. 10(1), 1–20(2020)[21] Miller, M.B., Bassler, B.L.: Quorum sensing in bacteria. Annu. Rev.Microbiol. 55(1), 165–199 (2001)[22] McCreery, H.F., Gemayel, G., Pais, A.I., Garnier, S., Nagpal, R.: Hystere- sis stabilizes dynamic control of self-assembled army ant constructions. Nat. Commun. 13(1), 1–13 (2022)[23] Aschwanden, M.J., Scholkmann, F., Béthune, W., Schmutz, W., Abra-menko, V., Cheung, M.C.M., Müller, D., Benz, A., Chernov, G., Kritsuk, A.G., Scargle, J.D., Melatos, A., Wagoner, R.V., Trimble, V., Green, W.H.: Order out of Randomness: Self-Organization Processes in Astro- physics. Space Sci. Rev. 214(2), 55 (2018)[24] Doi, M.: Soft Matter Physics. Oxford University Press, Oxford, UnitedKingdom (2013)[25] McCusker, D.: Cellular self-organization: generating order from the abyss. Mol. Biol. Cell 31(3), 143–148 (2020)[26] Sezgin, E., Levental, I., Mayor, S., Eggeling, C.: The mystery of membrane organization: composition, regulation and roles of lipid rafts. Nat. Rev. Mol. Cell Biol. 18(6), 361–374 (2017)[27] Bashirzadeh, Y., Liu, A.P.: Encapsulation of the cytoskeleton: towardsmimicking the mechanics of a cell. Soft Matter 15(42), 8425–8436 (2019)[28] Lavergne, F.A., Wendehenne, H., Bäuerle, T., Bechinger, C.: Group for- mation and cohesion of active particles with visual perception-dependent motility. Science 364(6435), 70–74 (2019)[29] Scholz, C., Engel, M., Pöschel, T.: Rotating robots move collectively andself-organize. Nat. Commun. 9(1), 1–8 (2018)[30] Mukherjee, S., Bassler, B.L.: Bacterial quorum sensing in complex anddynamically changing environments. Nat. Rev. Microbiol. 17(6), 371–382 (2019)[31] Czaczkes, T.J., Grüter, C., Ratnieks, F.L.: Trail pheromones: an integra-tive view of their role in social insect colony organization. Annu. Rev. Entomol. 60, 581–599 (2015)[32] Ebert, F., Dillmann, P., Maret, G., Keim, P.: The experimental realizationof a two-dimensional colloidal model system. Rev. Sci. Instrum. 80(8), 083902 (2009)[33] Rubenstein, M., Cornejo, A., Nagpal, R.: Programmable self-assembly ina thousand-robot swarm. Science 345(6198), 795–799 (2014)[34] Briand, G., Schindler, M., Dauchot, O.: Spontaneously flowing crystal of self-propelled particles. Phys. Rev. Lett. 120(20), 208001 (2018)[35] Tsai, F.-C., Koenderink, G.H.: Shape control of lipid bilayer membranes by confined actin bundles. Soft Matter 11(45), 8834–8847 (2015)[36] Bradley, L.C., Chen, W.-H., Stebe, K.J., Lee, D.: Janus and patchy col-loids at fluid interfaces. Curr. Opin. Colloid Interface Sci. 30, 25–33 (2017)[37] Sharan, P., Nsamela, A., Lesher-Pérez, S.C., Simmchen, J.: Microfluidics for microswimmers: Engineering novel swimmers and constructing swim- ming lanes on the microscale, a tutorial review. Small 17(26), 2007403 (2021)[38] Kerszberg, M., Wolpert, L.: Specifying positional information in the embryo: looking beyond morphogens. Cell 130(2), 205–209 (2007)[39] Michailidi, M.R., Hadjivasiliou, Z., Aguilar-Hidalgo, D., Basagiannis, D.,Seum, C., Dubois, M., Jülicher, F., Gonzalez-Gaitan, M.: Morphogen gradient scaling by recycling of intracellular dpp. Nature 602, 287–293 (2022)[40] Alba-Simionesco, C., Coasne, B., Dosseh, G., Dudziak, G., Gubbins, K.,Radhakrishnan, R., Sliwinska-Bartkowiak, M.: Effects of confinement on freezing and melting. J. Condens. Matter Phys. 18(6), 15 (2006)[41] Teague, B.P., Guye, P., Weiss, R.: Synthetic morphogenesis. Cold SpringHarb. Perspect. Biol. 8(9), 023929 (2016)[42] Baron, C.S., van Oudenaarden, A.: Unravelling cellular relationships dur-ing development and regeneration using genetic lineage tracing. Nat. Rev. Mol. Cell Biol. 20(12), 753–765 (2019)[43] Abraham, S.E., Bhattacharrya, S.M., Bagchi, B.: Energy landscape, antiplasticization, and polydispersity induced crossover of heterogeneity in supercooled polydisperse liquids. Phys. Rev. Lett. 100(16), 167801 (2008)[44] de Anna, P., Pahlavan, A.A., Yawata, Y., Stocker, R., Juanes, R.: Chemo- taxis under flow disorder shapes microbial dispersion in porous media. Nat. Phys. 17(1), 68–73 (2021)[45] Aref, H., Blake, J.R., Budiši ć, M., Cardoso, S.S.S., Cartwright, J.H.E.,Clercx, H.J.H., El Omari, K., Feudel, U., Golestanian, R., Gouillart,E., van Heijst, G.F., Krasnopolskaya, T.S., Le Guer, Y., MacKay, R.S., Meleshko, V.V., Metcalfe, G., Mezi ć, I., de Moura, A.P.S., Piro, O., Speetjens, M.F.M., Sturman, R., Thiffeault, J.-L., Tuval, I.: Frontiers of chaotic advection. Rev. Mod. Phys. 89, 025007 (2017)[46] Merino-Salomón, A., Babl, L., Schwille, P.: Self-organized protein pat-terns: The mincde and parabs systems. Curr. Opin. Cell Biol. 72, 106–115 (2021)[47] Chaudhuri, O., Cooper-White, J., Janmey, P.A., Mooney, D.J., Shenoy,V.B.: Effects of extracellular matrix viscoelasticity on cellular behaviour. Nature 584(7822), 535–546 (2020)[48] Ballerini, M., Cabibbo, N., Candelier, R., Cavagna, A., Cisbani, E., Giardina, I., Lecomte, V., Orlandi, A., Parisi, G., Procaccini, A., et al.: Interaction ruling animal collective behavior depends on topological rather than metric distance: Evidence from a field study. Proc. Natl. Acad. Sci. U.S.A. 105(4), 1232–1237 (2008)[49] Gude, S., Pinçe, E., Taute, K.M., Seinen, A.-B., Shimizu, T.S., Tans, S.J.:Bacterial coexistence driven by motility and spatial competition. Nature 578(7796), 588–592 (2020)[50] Balasubramaniam, L., Mège, R.-M., Ladoux, B.: Active nematics acrossscales from cytoskeleton organization to tissue morphogenesis. Curr. Opin. Genet. Dev. 73, 101897 (2022)[51] Foolen, J., Wunderli, S.L., Loerakker, S., Snedeker, J.G.: Tissue alignment enhances remodeling potential of tendon-derived cells - lessons from a novel microtissue model of tendon scarring. Matrix Biol. 65, 14–29 (2018)[52] Bohr, N.: Light and life. Nature 131, 457–459 (1933)[53] von Sivers, I., Templeton, A., Künzner, F., Köster, G., Drury, J., Philip-pides, A., Neckel, T., Bungartz, H.-J.: Modelling social identification and helping in evacuation simulation. Saf. Sci. 89, 288–300 (2016)[54] Yoon, S., Kim, M., Jang, M., Choi, Y., Choi, W., Kang, S., Choi, W.:Deep optical imaging within complex scattering media. Nat. Rev. Phys. 2(3), 141–158 (2020)[55] Icha, J., Weber, M., Waters, J.C., Norden, C.: Phototoxicity in live flu-orescence microscopy, and how to avoid it. BioEssays 39(8), 1700003 (2017)[56] Wei, J., Chu, X., Sun, X.-Y., Xu, K., Deng, H.-X., Chen, J., Wei, Z., Lei,M.: Machine learning in materials science. InfoMat 1(3), 338–358 (2019)
(参考文献可上下滑动查看)
复杂科学最新论文
集智斑图顶刊论文速递栏目上线以来,持续收录来自Nature、Science等顶刊的最新论文,追踪复杂系统、网络科学、计算社会科学等领域的前沿进展。现在正式推出订阅功能,每周通过微信服务号「集智斑图」推送论文信息。扫描下方二维码即可一键订阅:
推荐阅读
点击“阅读原文”,追踪复杂科学顶刊论文